Protein Kinase C Isoforms Differentially Phosphorylate Cav1.2 α1c
نویسندگان
چکیده
منابع مشابه
Protein kinase C isoforms differentially phosphorylate human choline acetyltransferase regulating its catalytic activity.
Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons; regulation of its activity or response to physiological stimuli is poorly understood. We show that ChAT is differentially phosphorylated by protein kinase C (PKC) isoforms on four serines (Ser-440, Ser-346, Ser-347, and Ser-476) and one threonine (Thr-255). This phosphorylation is hierarchical, with phosphorylati...
متن کاملCardiac actions of protein kinase C isoforms.
Protein kinase C (PKC) isoforms have emerged as important regulators of cardiac contraction, hypertrophy, and signaling pathways that influence ischemic/reperfusion injury. This review focuses on newer concepts regarding PKC isoform-specific activation mechanisms and actions that have implications for the development of PKC-targeted therapeutics.
متن کاملA-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors.
Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectromet...
متن کاملResponses of cardiac protein kinase C isoforms to distinct pathological stimuli are differentially regulated.
Currently at least 11 protein kinase C (PKC) isoforms have been identified and may play different roles in cell signaling pathways leading to changes in cardiac contractility, the hypertrophic response, and tolerance to myocardial ischemia. The purpose of the present study was to test the hypothesis that responses of individual PKC isoforms to distinct pathological stimuli were differentially r...
متن کاملClosed-state inactivation in Kv4.3 isoforms is differentially modulated by protein kinase C.
Kv4.3, with its complex open- and closed-state inactivation (CSI) characteristics, is a primary contributor to early cardiac repolarization. The two alternatively spliced forms, Kv4.3-short (Kv4.3-S) and Kv4.3-long (Kv4.3-L), differ by the presence of a 19-amino acid insert downstream from the sixth transmembrane segment. The isoforms are similar kinetically; however, the longer form has a uniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemistry
سال: 2009
ISSN: 0006-2960,1520-4995
DOI: 10.1021/bi900322a